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We introduce singular perturbation methods for constructing asymptotic 
approximations to the mean first passage time for Markov jump processes. Our 
methods are applied directly to the integral equation for the mean first passage 
time and do not involve the use of diffusion approximations. An absorbing 
interval condition is used to properly account for the possible jumps of the 
process over the boundary which leads to a Wiener-Hopf problem in the 
neighborhood of the boundary. A model of unimolecular dissociation is con- 
sidered to illustrate our methods. 

KEY W O R D S :  First passage time; Markov jump process; master equation; 
singular perturbation; asymptotic expansion. 

1. I N T R O D U C T I O N  

First passage times play an important role in applications such as rate 
processes in chemical physics (cf. other papers in this volume). In previous 
papers,(1 27) we introduced singular perturbation methods for constructing 
asymptotic approximations to the density of fluctuations about and the 
rate of transitions from deterministically stable states of the underlying 
dynamical systems. In particular, we computed the mean first passage time 
for diffusion processes (i.e., stochastically perturbed dynamical systems or 
Langevin equations), (1 23) and for Markov jump processes described by 
Master equations. (24 27) We considered both potential and nonpotential 
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systems in one and higher dimensions, both smooth and sharp potential 
barriers, both state-dependent (multiplicative) and state independent 
(additive) noise, transitions from nonequilibrium as well as equilibrium 
steady states, and Markovian as well as non-Markovian processes. Our 
methods were successfully applied to a variety of applications including 
Kramers' model of chemical reactions, noise-induced transitions in 
Josephson junctions and DC squids, to name but a few. 

When the underlying process is not a diffusion process, the mean first 
passage time is more difficult to construct and few reliable approximations 
are known. The purpose of this paper is to describe our method for con- 
structing approximations to the mean first passage time for Markov jump 
processes. 

We consider a Markov process {X~} defined by the stochastic dif- 
ference equation 

.X'n + 1 = YC, + eZ. (1.1) 

where {Zn} is a process whose conditional jump density at time n is 
stationary, independent of the values of Z~., k < n, and is given by 

a P r { Z , ~ < z l X , = x , X ,  l=xn 1 ..... Xo Xo} w(z,x) 
Oz 

(1.2) 

Here e is a small parameter, usually representing the ratio of the mean 
jump size to the size of the state space. We assume that the conditional 
moments of Zn exist for all k and are given by 

=f\ m~(x) zkw(z, x) dz (1.3) 

The scaling t = a n  leads to the drift equation x ( t + e ) - x ( t ) =  
em~(x) + O(e2), which corresponds to the ordinary differential equation 

2(t)=ml(x)  (1.4) 

where ml(x) is the conditional first moment of Zn. For e ~ 1, equation (1.4) 
qualitatively describes the evolution of the process. To simplify our presen- 
tation, we assume that there exists a unique stable equilibrium point of 
(1.4) at x = 0 ,  i.e., ml(0) =0,  m'l(0) < 0. 

We assume that the process {Xn} is defined on ( - 0 %  ~ )  and define 
the first passage time, ~, from the interval ( -  oe, B), B > 0, by 

= rain {n: Xn ~> B} (1.5) 
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The mean first passage time, n(x), from a point x in ( - 0% B) is defined by 

n(x)= E[~ l J(o= X] (1.6) 

where E denotes expectation. Then n(x) satisfies 

Ln(x)=j n(x+ez) w(z,x)dz-n(x)= -1 
o o  

(1.73 

and the absorbing interval condition 

n(x) =0, x>~B (1.8) 

Here L is the backward Kolmogorov operator. 
We note that since the jump density w(z,x) is defined for 

- o o  < z <  oo for all x, the process {Xn} can exit the interval ( - 0 %  B) by 
jumping over the boundary point x = B (cf. Fig. 1). As we shall see, this 
jump across x = B gives rise to complications in the construction of n(x). In 
particular, the mean first passage time n(x) may have a jump discontinuity 
at x = B (cf., e.g., Ref. 28). 

In general, the exact solution of (1.7), (1.8) is not known, so that 
approximate techniques are needed. One technique is to replace the left 
side of (1.7) by a second-order differential equation. This diffusion 
approximation is equivalent to replacing the original process {Jim } by a dif- 
fusion process. It is well known that diffusion approximations are not 
always good approximations to jump processes./29 32) In addition, a second 
difficulty arises in using diffusion approximations for the mean first passage 
time problem (1.7), (1.8). Specifically there is the difficulty of choosing the 
proper boundary condition at x =  B/2s'33~ The diffusion process must hit 
the boundary point x = B as it exists the interval ( - oo, B). Thus, the boun- 
dary condition that is often employed is the absorbing boundary condition 
n(B) = 0 in which case no discontinuity can arise. Other types of boundary 
behavior have been studied for diffusion processes. ~34/ However, there 
appear to be no simple boundary conditions for diffusion equations that 
describe jumping over a boundary. 

x B 

Fig. 1. An illustration of some possible jumps of the process X n starting from the point x. 
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Our objective in this paper is to present a technique for constructing 
an asymptotic approximation of the mean first passage time n(x) for the 
process {X,}. Our methods are applied directly to (1.7) and do not involve 
the use of diffusion approximations. In addition, we properly account for 
the possible jumps of the process over the boundary x = B. Specifically we 
use condition (1.8) and do not replace it with an absorbing point con- 
dition. In previous work, (24 26) we constructed approximations to n(x) for 
Markov jump processes that hit the boundary point as it exited. Thus a 
simple absorbing condition was used. This is the case, for example, in ran- 
dom walks with nearest-neighbor jumps where the boundary point is a lat- 
tice point. 

In Section 2, we construct an asymptotic approximation to n(x) for 
two types of boundary points at x = B. The first is the noncharacteristic 
boundary defined by rn~(B)< 0. Next we treat the characteristic boundary 
in which rn~(B)= 0, i.e., B is an unstable rest point of the drift equation 
(1.4). In particular, we show that n(x) may have a jump discontinuity at 
x=B. Finally, in Section 3, we apply these methods to a model of 
unimolecular dissociation and compute the rate of dissociation. For this 
model, we also obtain an explicit, closed form solution of (1.7), (1.8) and 
verify that in fact our asymptotic solution is the leading term in the 
asymptotic solution of the exact solution. Finally, in the Appendix, we 
describe the WKB approximation to the stationary solution of the forward 
equation, which is used in the construction of n(x). 

We note that our methods have been extended to a wide variety of 
problems (27) including continuous time processes, problems with two exit 
boundaries, and partially reflecting or sticky boundary points. These were 
analyzed in the context of other applications such as queueing theory. (3s~ 

2. M E A N  FIRST P A S S A G E  T I M E  

We now construct an asymptotic solution of (1.7), (1.8) for small e. 
We consider two types of boundary behavior. First, we consider the non- 
characteristic boundary where ml(B ) < 0. Then, we treat the characteristic 
boundary in which rn~(B)= 0, i.e., B is an unstable rest point of the drift 
equation. Using the condition (1.8) in (1.7), we rewrite (1.7) as 

(~- x~/~ n(x + ez) w(z, x) dz . n(x) = - 1  (2 .1 )  

For x bounded away from B, we extend the upper limit of integration to oo 
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and use the Kramer s  Moya l  expansion of (2.1) to derive the outer  
solution. Tha t  is, we expand  n(x + ez) in powers  of s to get 

ekmk(X) d k 
k! dx k n ( x ) =  1 (2.2) 

k--1  

Clearly, as s ~ 0, we expect n(x) to become infinite. Thus  we scale 

n(x) = C(s) u(x) (2.3) 

where C ( s ) ~  oo as e--+0 and supx<B u ( x ) =  1. We obta in  f rom (2.3) and 
(2.2) 

skmk(x) 
k! u(k)(x)~O as e ~ 0  (2.4) 

k = l  

N o w  we assume the regular  expansion (24 27) 

U ( X ) ~ b t o ( X  ) A V ~:/ , / l (X ) A[_ . , -  (2.5) 

to obta in  the reduced equa t ion  

m~(x) U'o(X) = 0 (2.6) 

It  follows that  Uo(X)= 1. 
The app rox ima te  solut ion 

no(x) = C(s) Uo(X) = C(e) (2.7) 

satisfies (2.1) asymptot ica l ly  for x bounded  away  f rom B, that  is, when the 
upper  limit of in tegrat ion can be replaced by ~ ,  but fails to be valid near  
the boundary .  Fo r  x near  B it is necessary to const ruct  a b o u n d a r y  layer 
correct ion to Uo(X). 

We introduce the stretched variable 

B - x  
= - -  (2.8) 

s 

and the scaled bounda ry  layer function 

into (2.1) to obtain 

U(tl) = u(B--  sr]) (2.9) 

U(r l - z) w(z, B -  s~/) d z -  U(rl)~O (2.10) 
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We assume that U~ Uo+eUI + " "  and that w(z, x) has a power series 
expansion in x near x = g, so that 

w(z, B -  eq)~ w(z, B) - ewx(z, B)q + ... (2.11) 

Using (2.11) and the change of variables, ~ / -z -+~ ,  the boundary layer 
equation (2.10) then becomes, to leading order, the Wiener-Hopf equation 

S Uo(r/) = w(t / -~ ,  B) Uo(e) d~, r />0  (2.12) 

subject to 

Uo(r/) = 0, r/~<0 (2.13) 

In addition, Uo01) must match with the outer Uo(X), so that the matching 
condition is 

lira Uo(r/)= 1 (2.14) 

Problem (2.12)-(2.14) is solvable by the Wiener Hopf technique, (38) 
but the solution cannot be expressed in terms of elementary functions for 
an arbitrary density w(z, x). However, since ml (B)<  0, the Fourier trans- 
form of Uo(r/) has a simple pole at the origin so that Uo(~/) approaches a 
constant for ~/>1 and satisfies the matching condition (2.14). For the 
specific example we consider in Section 3, the boundary layer function will 
be constructed explicitly. 

The uniform expansion of n(x) is now given by 

B - x  
n(x)~C(e) Uo(---7--- ) (2.15) 

In general, Uo(0 + ) # 0 = Uo(0 - ) so that n(B ) =/= 0 = n(B + ) and n(x) is dis- 
continuous at x = B (cf. Fig. 2). In fact, n(B )=  O(C(e)) when rnl(B)< O. 

To determine the as yet unknown constant C(e) we multiply equation 
(2.1) by the solution p(x) of the stationary forward equation 

L*p(x) = p(x -- ez) w(z, x - ez) dz - p(x) = 0 (2.16) 
o o  

and integrate over ( - 0 %  B), to obtain 

- p ( x )  d x  = - n ( x )  p ( x )  d x  
- - o o  o 3  

+ f s~  f(~-x)/~n(x +ez)w(z,x)  p(x)dzdx  (2.17) 
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n x )  

--.,, 
1 

0 B x 

Fig. 2. A sketch of the mean exit time n(x) versus x illustrating the existence of a discon- 
tinuity at x = B. 

Now we interchange the order  of integrat ion in the double  integral on the 
right side of (2.17) to obta in  

- p(x) dx = n(x) L*p(x) dx 
o - o c  o9  

C~ - p(x) w ( z , x ) n ( x + e z ) d x d z  (2.18) 
~ - - o c  

where the opera to r  L* is defined in (2.16). Finally, using L*p = 0 we obta in  
the identity 

p(x) dx= p(x) w ( z , x ) n ( x + e z ) d z d x  (2.19) 

Next  we replace p(x) by its W K B  app rox ima t ion  (cf. Appendix)  

p(x) ~ K(x) e - ~'(x)/~, 0(0)  = 0, 0 ' (0 )  = 0 (2.20) 

and n(x) by its uniform app rox ima t ion  (2.15). Then,  not ing that  the major  
cont r ibut ion  to the integral with respect to x comes f rom the point  x = B, 
where p(x) is maximal  in (B, Go), we again in t roduce the stretched variable 
q = ( B -  x)/e and expand  bo th  p(x) and w(z, x) near  r /=  0. Finally, using 
Laplace 's  expansion of the integral  on the left-hand side of  equat ion  (2.19) 
abou t  the stable rest point  x = 0 and solving for C(e), we obta in  

c(e) ~ L ~ J  K(B) 5 ~ oo e"'P'<~) 5~-~ w(z, B) Uo(~ -- z) dz dtl (2.21) 
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For processes Xn that must hit the boundary point x - - B  to exit the inter- 
val ( - o o ,  B) (i.e., processes that do not jump over the boundary), the 
Kramers-Moyal expansion (2.2) is valid up to the boundary. The solution 
n(x) of (2.1) is then continuous at the boundary, hence it is determined by 
the simpler absorbing boundary condition n(B)=0. This case, with 
applications in physics and chemistry, was considered in Refs. 24-26. This 
boundary condition is also used in diffusion processes for an exit point. 

Next, we consider a characteristic boundary, where ml(B ) -- 0. Again a 
boundary layer analysis is required. As in the noncharacteristic case, we 
introduce the stretched variable ~/= (B-x)/e and the boundary layer 
function U(r/)--u(B-erl)  into (2.1) to obtain the boundary layer equation 
(2.12) subject to the condition (2.13). The solution can be constructed 
using the Wiener-Hopf technique. However, if ml(B)=0,  the Fourier 
transform of U0(t/) how has a double pole at the origin and hence Uo(~/) 
grows linearly for r/>> 1, i.e., 

Uo(r/) ~ &/ (2.22) 

Thus the matching condition (2.14) is not satisfied and another boundary 
layer correction is needed. This boundary layer, sometimes referred to as 
an intermediate layer, connects the original boundary layer expansion and 
the outer (regular) expansion (2.5). We now introduce the new scaling and 
intermediate layer function by 

n(x) = c(~) v(~) 
(2.23) 

4 = (g - x)/x/7 

where C(e)--+ oo as e--+ 0. Using (2.33) in (2.1), we obtain 

V(4)= f~'/~ w(z, B-- xf7 4) V(4- xfT z) dz (2.24) 

subject to the matching condition 

lim V(~)= 1 (2.25) 

with the outer expansion and the second matching condition with the 
boundary layer expansion, which is that V(4) for 4~  1 match with Uo(r/) 
for ~/>>1, [see (2.22)]. For 4=O(1) ,  we extend the upper limit of 
integration in (2.2_4) to c~ and expand the integral in powers of x/7. Using 
V(~)~ Vo(4)+ ~/e VI(~)+ "" ,  we obtain to leading order, 

�89 ) V;'(~) + {m'~(B) V~)({) = 0 (2.26) 
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The solution of (2.26) with the matching condition (2.25) yields 

Vo(~.) = 2c F m'l(B) 11/2 f~ e m'l(B)u2/m2(B) du -~- (1 - -  C) (2.27) 
L~m2(B)] ~o 

We note that (2.27) is uniformly valid for all x satisfying B-x>>e .  We now 
apply the second matching condition described above. As ~ ~ 0, we find 
that 

m',(B) 11/2 
Vo(~)~ (1 - c) + 2 L ~ m - - ~  j x/~ ~/c (2.28) 

so to match (2.22) with (2.28), we choose 

c = l  

( = 2 ~  m](B) 1 'j'2 (2.29) 

L~m2(B)J 

Thus, the solution of (2.1) is given by 

n(x)~C(e) 

2 [ mi(B) ]t/z f2B x)/.S 
L~m2(B)j e -m;(m"2/m2(8) du, B -  x>>e 

No ' 
8 

(2.30) 

C(c) 7C K(0) e(1/e)~,(B ) m2(0) m2(B) 1/2 1 (2.31) 
K(B) mi(0) m'~(B) me(B) 

This formula was derived in Ref. 25 for the case when the process X, hits 
the boundary as it exits. 

The procedure used above applies directly to problems on a finite 
interval, where the second boundary point can be an exit boundary, a 
reflecting boundary, or a partially reflecting boundary. (24 27) The analysis of 
the mean first passage problem for the continuous time Markov jump 
process {X(t)} is similar to that of the discrete case and is given in Ref. 35. 

where Uo((B-x)/e)  is the solution of (2.12)-(2.14). We again observe that 
n(x) will, in general, be discontinuous at x = B. However, in contrast to the 
case when rex(B)< 0, we now have n(B ) =  O(x/~ C(e)) when ml(B)= O. 

Finally, we compute the constant C(e) using the procedure described 
above. Thus, using (2.20) and (2.30) in (2.19), we find that 
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3. EXAMPLE 

We now consider a model of unimolecular dissociation that was posed 
as a Markov  jump process in Refs. 36 and 37. The model describes the ther- 
mal excitation of large molecules and the quantity of interest is the dis- 
sociation rate which is the reciprocal of the mean number  of collisions until 
dissociation. 

Let E be the energy of the excited molecule and E o be the threshold 
value, i.e., dissociation occurs if E>~ E 0. The excited molecule undergoes 
collisions which cause an increase or decrease in its energy (cf. Refs. 36 and 
37 for details). 

We define a nondimensional process by letting x = E/E o and scale the 
jump size between energies E1 and E 2 by z = (El - E2)/kT, where T is the 
absolute temperature and k is Boltzmann's constant. Then the conditional 
jump density function of {Zn} for this model is given by 

e z/~, - -  - -  < Z < 0 
g 

w ( z , x ) = K  - a - b + a e  ~/~ 6(z), z = 0  (3.1) 

e z/b,  Z > 0 

Here the parameter  e = kT/Eo is assumed to be small. The parameter  K is 
the collision frequency and the parameters a and b are defined by a = a/kT 
and b = fl/kT where 0~ and fl are the average energy loss and gain, respec- 
tively, per collision. We assume that the stationary distribution is the 
Boltzmann distribution so that 

which requires that 

p(x) or e -x/~ (3.2) 

1 1 
- 1  (3.3) 

b a 

In this example, we find that 

r n l ( x ) ~ b - a  for x~>~ (3.4) 

so that for the dissociation to occur the process must move against the flow 
of the drift equation (1.4). 

Let n(x) be the mean number  of collisions until dissociation for a 
molecule with initial energy x. Then n(x) satisfies (1.7), with w(z, x) given 
by (3.4), and the condition 

n(x) = 0, x~ (0 ,  1) (3.5) 
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which gives 

n(x + ez) eZ/a dz + [ - a -  b + ae -:'/"~] n(x)  

f~ l ,,c)/e 1 (3.6) 
+ n(x  + ez) e -z/b dz - K 

We note that the process must exit by crossing x = 1. That is, jumps across 
x = 0 are not allowed since they would lead to negative energies [cf. (3.1)]. 

We now apply the method described in Section 2 for the noncharac- 
teristic boundary case. Away from x = 0  and x = 1, we extend the limit 
- x / e  ~ - o o  and (1 -x ) /~  ~ oo in (3.6) and find that the outer solution is 
given by 

n(x)  ~ C(e) (3.7) 

where C(e) ~ oo as e -o 0. The boundary layer expansion near x = 1 is con- 
structed by introducing the stretched variable r/= ( 1 - x ) / e  and the boun- 
dary layer function U(r/) [recall n (x )=  C(e)u(x)]  to obtain to leading 
order the Wiener-Hopf problem (38) (2.12), (2.13) with B = I  and the 
matching condition (2.14). Using (3.1) in (2.12) we obtain the 
Wiener-Hopf equation 

i ~ 
(a + b) U0(r/) = g0( r / -  z) e z/" dz 

- o o  

with 

+ Uo(r/--z)  e-Z/bdz, r />0  (3.8) 

U0(r/) = 0, r/~<0 (3.9) 

We note that for r /<0  the left side of (3.8) is an unknown function, ~b(r/) 
which must be determined along with the solution U0(r/) for r/> 0. Apply- 
ing the Wiener Hopf technique to (3.8) we find that the solution satisfying 
the matching condition (2.14) is 

Uo(~) 1 b = - - - e  ,i, r />0  
a 

O(r/) = (a + b) be "/a, r~ < 0 

(3.1o) 

Hence, the uniform solution for the mean number of collisions until dis- 
sociation is given by 

n ( x ) ~ C ( e ) [ 1 - ! e  -(1 x)/~ 1, a > b  (3.11) 
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We note that n (1 )=  C ( e ) ( 1 -  b/a)~0 and hence the mean exit time has a 
jump at x = 1; see Fig. 2. Clearly, the use of an absorbing point condition 
at x = 1 would lead to a serious error. 

Finally, we compute the value of C(e) using the integral identity (2.19) 
which in this case is 

1;~ ; f  ~(' x~/~n(x +ez)w(z ,  x)dz dx (3.12) k p(x) dx= p(x) o_x/  

We now use p(x) given in (3.2) and observe that the major  contribution to 
the integral on the right side of (3.1) comes from a neighborhood of x =  1. 
Thus, we let t /=  ( 1 - x ) / e  so that (3.12) becomes 

K-ee  '/~C(e) f ~ e"[" Uo(rl-z) w(z, 1)dzdtl (3.13) 
o 9  ~ o o  

Here we have asymptotically evaluated the integral on the left side of 
(3.12), localized the jump density at x = 1, and extended the lower limit 
-x/e  to - o o .  Hence, we find that 

C 1/e 

C(~) K~Ooge, f~_o 9 Uo(tl_z) w(z, 1)dzdt 1 
e Ue 

el/e 

- K ( a  + b)  b 2 (3.14) 

Thus, the uniform expansion for the mean number  of collisions until dis- 
sociation is 

n(x) K(a+b)b2 1--ea (1 x)/~ (3.15) 

We now construct the exact solution to (3.6) and show that the 
leading term in its asymptotic expansion for small e is the solution (3.15) 
which we constructed. To construct the exact solution, we first introduce 
the new variable ~ = x + ez into the integrals in (3.6) to obtain 

s = ~ n(~)e (r x)/a~d~ +[-a-b+ae-X/"~]n(x)  

lf~ 1 + - n(~) e - (~-  ~)/b~ d~ - (3.16) 
K 
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We now apply the operator 1 +gab(d/dx)-g2ab(d2/dx 2) to s  - 1 / K  
in (3.16) which leads to the second-order differential equation 

(a + b -  ae-X/a~) n"(x) + l [ - a -  b + (a + 2 ) e x/a~]n,(x)_ 
g 

1 
g2abK 

(3.17) 

We obtain a boundary condition at x = 0  by applying the operator 
1 -  eb(d/dx) to s  -1 /K  and setting x = 0 to obtain 

1 
n'(O)- eb2K (3.18) 

Similarly we apply the operator 1 + ~a(d/dx) to s  -1 /K  with x = 1 to 
obtain 

a+b 1 
( a + b - a e  1#1') n'(1) + n ( 1 ) -  (3.19) 

ea eaK 

The solution of (3.17) with the boundary conditions (3.19 and (3.18) is 

1 f /  a + b - a b e  s/a~ a+bf~  e ~/~ 
n(x) = e ~  [ a + b ~ ~ 2 d s + ~ - - ~ a b  [a+b2a-e-S/~,]ads 

1 e 1/~ a + b - abe- a/a~ + - - +  
(a+b)K b K ( a + b - a e  1/ea) (a+b)bK(a+b_ae-1/~.~,) 

(3.20) 

We now expand n(x) given by (3.20) for e ~ 0, with x bounded away from 
1. The leading term in the asymptotic expansion has contributions from the 
second and fourth terms in (3.20) which give 

e 1/~ 

n(x) Kb2( a+ b) (3.21) 

This agrees with our asymptotic solution (3.15) when x is bounded away 
from 1, i.e., ( 1 - x ) / e  is large. 
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A P P E N D I X :  W K B  S O L U T I O N  

We now describe the WKB approximation to the stationary solution 
of the forward equation. For the process {X,} on ( - ~ ,  ~ )  described in 
Section 1, the stationary forward equation is 

f 
~ 

L*p(x)  = p ( x  - ez) w(z, x - ez) dz - p (x )  = 0 
o o  

(A1) 

Here L* is the formal adjoint of the backward operator L defined in (1.7). 
We seek an asymptotic solution of (A1) for small e in the WKB 
form(30,24 27) 

p ( x ) ~ [ K o ( x ) + e K l ( X ) +  " . ] e  -O(x)/~, 0 < a ~ l  (A2) 

Substituting (A2) into (A1), expanding for e > l ,  and equating the coef- 
ficient of each power of e to zero yields to leading order 

f ~  [e z~ '~ ) -  1] w(z, x)  d z = O  (A3) 

At the next order in g, we find that Ko(x ) satisfies 

f ~ [w(~, x) Ko(X)] + - -  
zw(z, x) 

~"(x) Ko(x)} ze z~>'l dz = 0 (A4) 

Equation (A3) has a unique solution 0 = 0 ( x )  satisfying 0 ( 0 ) = 0  and 
0(x)  >0 ,  x ~0.  Given the solution of (A3), we construct the solution of 
(A4) as 

Ko(x ) = exp{ - �89  S~ [ ~  z(Ow/Oy)(z, y ) e Z O ' ( ' l d z / ~  zeZO'(Y)w(z, y )dz ]  dy} 
[ ~S- ~ zeZ~"(X)w( z, x)  dz] 1/2 

This solution is used in the integral (2.19) to determine the constant C(e) in 
the expression for the mean exit time n(x). 
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